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SUMMARY

The application of conventional optimization schemes to aerodynamic design problems

leads to inner-outer iterative procedures that are very costly. In this report, an alternative

approach is developed based on the idea of updating the flow variable iterative solutions and

the design parameter iterative solutions simultaneously. The optimization scheme is suitable

for application to general aerodynamic problems; here, it is applied to the problem of

optimizingadvanced propellerdesigns,specificall_'the SR-3 propeller.The Euler equations

arc assumed to be the flow governing equations in this application,and an implicit

approximate factorizationscheme isused to compute the flow fieldaround the advanced

high-speedSR-3 propeller.In the computations,the.propellerefficiencyismaximized subject

to a given power constraint.The twistdistributionof the propellerblade isassumed to bc

describedby a polynomial.The coefficientsof the polynomialarc the designparameters.A

1.2% increaseinthepropellerefficiencyisachieved.

Computations were performed to test the scheme's efficiency, accuracy, and sensitivity.

The results indicate that the cost of solving an optimization problem with L design parametcrs

is approximately equal to L times the cost of solving a regular analysis problem. The scheme

is highly accurate in determining the solution of the constrained optimization problem. The

convergence rate of the solution is weakly sensitive to variations in the computational

parameters and the initial iterative guesses for the design parameters.

INTRODUCTION

Solutions of constrained optimization problems afinimize an objective function, E, subject

to given constraints. In aerodynamic applications, the objective function and the constraint

functions, f_, i = l, 2..... depend on the flow field solution, _. The optimization scheme

developed here is applicable to situations in which :he flow governing equations are nonlinear

equations that are solved iteratively.

Conventional optimization methods (e.g., the steepest descent method and the conjugate

gradient method) are iterative procedures that require the evaluation of the objective function

many times before the converged optimum solution is determined. Since E and fl are

dependent on the flow solution, _', in addition to the vector of design parameters, P-',the flow

governing equation must be solved each time £ and f_ are evaluated. Therefore, the

application of conventional optimization schemes to aerodynamic design problems (refs. 1-5)

leads to two-cycle (inner-outer) iterative procedures. The inner iterative cycle solves the

analysis problem for _" iteratively, while the outer cycle determines the the optimum

iteratively. An alternative to this costly procedure is the single-cycle approach, which



modifiesthe iterative procedure for solving the flow governing equations so that _' and P"are

updated simultaneously (ref. 6). Difficulties have been encountered, however, in attempting to

apply this approach to advanced propeller design problems (ref. 7). Our objective here is to

develop a scheme based on the idea of simultaneously updating the flow variables and the

design parameters that can overcome the problems previously encountered.

A resurgence of interest in recent years in the turboprop propulsion system has been

caused by the projected high fuel costs in the 1990's and the potential savings in fuel con-

sumption that can be achieved with such a propulsion system. Advanced propellers operate at

transonic speeds. Therefore, one of the two basic elements required for optimizing the design

of these propellers is an analysis code capable of solving the nonlinear flow equations about

the propeller so that the compressibility effects are predicted. The second element is an

optimization scheme that can be efficiently combined with the analysis code.

Procedures have been developed for designing propellers by combining vortex lattice aero-

dynamic analysis methods with standard optimization schemes (refs. 8,9). However, the first

attempt to optimize propeller designs by using the full potential formulation (ref. 10), which

includes the necessary elements for transonic design, encountered difficulties in maximizing

the propeller efficiency subject to a given power constraint (ref. 7). The optimization

scheme's inaccurate determination of the constraint surface resulted in these difficulties.

Thus, in this scheme, efficiency was replaced as an objective function by an approximation,

which is valid only under special conditions, and computations were limited to low Mach

numbers.

In the present work, an optimization procedure is developed based on the idea of updating

the flow variable iterative solutions and the design parameter iterative solutions simultane-

ously. This procedure has several common elements with the scheme of Reference 7. How-

ever, it is more reliable and, thus, eliminates the difficulties encountered by the scheme of

Reference 7. Although applied here to the propeller design problem, this optimization scheme

is suitable for application to general aerodynamic design problems. The Euler equations are

assumed to be the flow governing equations. An implicit approximate factorization scheme

(ref. I l) is used to compute the flow field about an advanced high-speed propeller.

APPROACH

The propeller design problem is cast into an optimization formulation in which the
...._ $

optimum design parameter vector, P , is to be determined such that

E(P ;g--') = mi_.nE(ff'; g-') (1)
P

2 TR-447/07-88



subjectto theconstraint

f = 0 (2)

with the flow variable vector _' satisfying the flow governing equation

= c: (3)

subject to the boundary condition

B'(_; P') = 0 (4)

Our objective is to maximize the propeller efficiency, ,7. The objective function is therefore

defined by

E _ DI"/

The propeller power requirements are constrained to a specified value through the constraint

function

f = Cp - Cpo

Equation (3) is the system of Euler equations gove;ning the flow field, and Equation (4) is the

propeller solid wall boundary condition. The vect.gr of design parameters, P, defines the pro-

peller geometrical configuration.

The goal of the optimization scheme is to det._rmine the values of the design parameters

that minimize the objective function, E, subject to an equality constraint. A search must

therefore be conducted in the design parameter s_ace ff for the optimum solution, 3 °. This

optimization problem is most conveniently solved in the rotated design parameter space P-',

with the P1 coordinate normal to the constraint surface and the P_ coordinates, where l = 2, 3,

.... L, parallel to the constraint surface. For fixed values of the components of _, let

_"+x = _(_"; _), n = 0, 1, 2.... (5)

be the iterative solution for the analysis problem, where _ denotes the solution obtained by

applying the iterative scheme for solving the Euler equations once using _" as an initial guess.

An implicit approximate factorization scheme is used here to solve the Euler equations. It is

described in Reference 11. As for the analysis solution, obtaining the optimization solution

requires the repeated application of Equation (5) to update the flow field. While P_-"is held

fixed in the former case, it is allowed to vary in the latter. The scheme used to update _P'fol-

lows.

TR-447/07-88



Thevectorof design parameters _ is updated every AN iterations. Therefore,

= (6)

where

6_Pn+x=0, (n+l)/ANx 1,2,3 ....

In the iterative steps that satisfy the relation (n+I)/AN = 1, 2, 3..... the incremental values

for the design parameters are given by

6_P/'+x

6P'2+x = - _ [min (C If"l, 6P,_,.x)] (7)
- if,,[

I APt+X, l=2,3, L

6P m_.,,

= min 1, lAP,+l[ -- "", (8)

where

:.= :.-)
l

:,P/'+:= :-[c:(q+_+ l)+ c_(q+_- l)]6_?/'+:-:'N (9)

AE/'6P/'+:-:'M
T_ "1"1

I_E? 6_.Pp+x-zx_¢I

 Er= _ :)

e is a small positive constant and if, l = 1, 2..... L, are the set of orthogonal unit vectors

along the axes of the rotated coordinate system P_', P] .... , P_. The solution _ is a solution

in which the l n_component of__is perturbed by _.

The incremental displacement in the design parameter space introduced so that the con-

straint may be satisfied is taken in the direction normal to the constraint surface and is deter-

mined by the chord method in Equation (7). The constant 6P,,_ sets an upper limit on the

magnitude of this incremental displacement. The incremental displacements given by Equa-

tion (8) are introduced along the coordinate axes, which are parallel to the constraint surface

with the purpose of reducing the value of the objective function. The sign of the incremental

correction 6Pr +1, where _,,_+1 ln__ oft is the component of the vector _,,+1 is chosen to be oppo-

site to that of OE/OP'i'. The magnitude of the increment 6__Pr+x is given by

I_/_+Xl = c 16___p+l-Z_Vl

with an upper limit given by 6P_.,,, where c > 0. If the signs of 6_.P_+1 and 6_.Pr+l-zx_v are in

agreement, then the last two iterative solutions P/_ and p_,-zx_ fall to one side of the point along

the Pt direction at which E is a minimum. In this case, c is set equal to the constant c 1, which

TR-447/07-88



is greaterthan 1. Increasing the magnitude of the step size in this manner accelerates the

approach toward the point along the Pt direction at which E is a minimum. On the other

hand, if the signs of 6_.Pr+1 and 6_Pr+l-zav are not in agreement, then _P_and p__,-zav fall on oppo-

site sides of the point along the _P_direction at which E is a minimum. In this case, c is set

equal to the constant c2, which is less than 1. Decrcasing the magnitude of the step size in this

manner is necessary for convergence to the point along the _Pzdirection at which E is a

minimum.

The updated components of the design parameter vector if,,+1 are used to calculate the

new flow iterative solution, _,=+1, given by

_"+_= _'_; i_"+_) (10)

and the perturbed solutions __ +_, 1 = 1, 2..... L, t.iven by

= g.+x (l l)

While the optimization procedure is most suitably conducted in terms of the transformed

parameters _Pz, l = 1, 2..... L, the flow solution is computed in terms of the physical design

parameters P_, i = 1, 2 ..... L. To express the transformed design parameters in Equations

(I0) and (11) in terms of the original design parameters, it is necessary to use the transforma-

tion equation, which relates these two sets of parameters. This equation is

_.+1 = r.+l _..+1

where the orthogonal transformation matrix T "+x is given by

r'+_ = _+' -"+',_.. ._+_1

The unit vector_ +_ is normal to the constraint suri'ace at P' = _'_ and is given by

where an estimate for Gr, the 1a' component of Vf, is given by

Gr = [f(P-'" + eft; _- f(ff_; _'")]/e (13)

The Gram-Schmidt orthogonalization process, which uses a set of L linearly independent vec-

tors to construct a set of L orthonormal vectors, is used to construct the unit vectors
..._+1
tl ,1 = 2, 3..... L, along the rotated axes PI '+1 , I = 2, 3..... L. The following equation is

used for this purpose:

..._+1 _/+1

- , 1=:2, 3..... L
zt 17_+xi

TR-447/07-88



where

k=!

In the initial iterative step, the vectors _ are given by _ =_, l = I, 2..... L, where

, l = 1, 2.... , L, are the set of orthogonal unit vectors along the axes of the coordinate sys-

tem Pl, P2 ..... PL.

While the flow variable vector _'is updated each iterative step, the coordinate system in the

design parameter space is rotated every AN iterations. The unit vectors _, like the vector of

design parameters P*, are updated only in the iterative steps that satisfy the relation

(n+I)/AN = 1, 2, 3 .....

The optimization scheme described above requires that L +1 iterative problems be solved

in parallel. In addition to the main solution, L perturbed solutions are computed in which

each of the design parameters in the transformed space P1, P_ ..... Pr. is perturbed. The

computational costs and the computer memory requirements are therefore proportional to

L+l. A modification to this scheme, which requires that only L iterative solutions be

obtained, is now introduced. In the modified procedure, the perturbation solution associated

with the perturbed design parameter in the direction of the _P1 axis, normal to the constraint

surface, is not computed. This solution was used in Equation (13) to compute Gi', which is

required for the calculation of the vector 7_+1, which determines the direction normal to the

constraint surface in Equation (12). In the absence of this solution, a new procedure for rotat-

ing the design parameter space must be defined. The procedure is first explained for the case

of a two-design-parameter problem, and then it is extended to the general multi-design-
parameter problem.

Figure 1 shows the design parameter space for a two-design-parameter problem. In the fig-

ure, the constraint function values fo_ fi'l, f] are defined as follows:

so-= :'")

i:' = +, ,_-?,,

i:' = +,3,

In the modified procedure, the chord method, used in Equation (7) to satisfy the constraint

condition, is used to rotate the design parameter space. The rotation angle 68_t+1 given by

60_ 1 = tan -1 (14)

is used to rotate the coordinate system, where the subscript M indicates that the modified

6 TR-447/07-88
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6ff" •

I I
I '

Figure 1. Two-Dimensional Design Parameter Space

scheme is used. The angle 6a__1 is now compared to the corresponding rotation angle 68'*+_

used in the original scheme and given by

68-+1 = tan -1 (15)

This comparison shows that the term fl' - f] in the original scheme is replaced by _/C in the

modified scheme. Therefore, the modified scheme may be viewed as the original scheme with

the exception that the exact value for 7'1 is replaced by an approximate estimate in which the

gradient of f in the direction of the _ axis, Gx, is not calculated but is estimated using the

same proportionality constant used in the chord method of Equation (7). Thus,

1
al- c (16)

This is applicable for both the two-design-parameter problem and the general multi-design-

parameter problem.

TR-447/07-88 7



In the optimization scheme developed here, corrective increments are applied to the design

parameter solutions every few iterations of updating the flow solutions. For convergence to

occur, the signs of the increments must be chosen correctly to allow the iterative solution to

approach the desired solution. The magnitudes of the increments are dependent on the com-

putational constants c l, c2, and C. Because the design parameters are updated frequently dur-

ing the iterative process, we are not concerned with determining the incremental step sizes

that lead to the highest short-term convergence rate. In fact, this may be difficult to define,

since the flow variable solutions are continuously changing during the iterative process. Our

aim is to achieve design parameter convergence over a long term defined by the number of

iterations required for the flow solution convergence. A wide range of incremental step sizes

should produce the desired convergence properties over many iterations, even though conver-

gence properties over a few iterations may differ. These comments apply to both of the

schemes described above for determining the design parameter space rotation. The direct

procedure for determining the design parameter space rotation in the original scheme is

replaced by an iterative procedure in the modified scheme. Since this rotation is updated fre-

quently during the iterative process, this replacement should have no substantial effect on the

overall convergence of the solution.

A potential problem exists when the modified scheme is used for rotating the design

parameter axes. This problem is now discussed, then suggestions for overcoming it are

presented.

In the first AN--I iterative steps of solving the problem, the coordinate system in the

design parameter space coincides with the original unrotated design parameter space

Pt, P2 ..... Pz. At the AN _' iterative step, a new rotated coordinate system is determined.
._#Jr

When Equation (13) for determining G_zx'v-1 is used, we are guaranteed that the vector t x

points in the direction in which the constraint function increases. Consequently, the use of

Equation (7) will cause the iterative solution to approach the constraint surface. When Equa-

tion (13) is replaced by Equation (16) for determining G_ _-1, there is a possibility that the

computed vector _ will point in the direction in which the constraint function decreases. In

this case, the assumption that C is positive is wrong, and using it will cause the solution to

diverge. This occurs if the vector _'_ is nearly in the direction of -Vf _v-x. That is, if the

quantity

V/_-1

is close to unity. The probability of this occurring is approximately 1:4 in a two-design-

parameter problem and is reduced further as the number of design parameters increases.

There are two suggested approaches for overcoming this problem. In the first approach, the

initial few iterations are performed using the original scheme for determining G[' by Equation

8 TR-447/07-88



(13) in order to determine the correct initial directions for the Pl axis. This may then be

updated using the modified scheme, Equation (16). in the rest of the computation. Realizing

that the probability for the potential problem to occur is small, the second approach uses the

modified scheme from the beginning of the computation. If divergence does occur, then the

constraint function is redefined to be equal to the negative of the original constraint function,

and the problem is solved again.

RESULTS

The optimization procedure described above, combined with the Euler analysis code

developed by Yamamoto et al. (ref. 11), was used to find the twist distribution for the blades

of the eight-bladed SR-3 propeller with the objective of maximizing its efficiency under the

constraint of a desired power coefficient given by C_, = 1.7. The computations were per-

formed for a free-stream Mach number of 0.8 and an advance ratio of 3.06. We let _o_/, be the

blade angle at the 75% blade span corresponding to the desired power coefficient, and we

took the blade angle distribution, Bo(r), corresponding to this propeller as our base configura-

tion. A perturbation, /_'(r), to the blade twist distribution, /_o(r), was computed so that the

propeller efficiency is maximized subject to the power constraint. The perturbation twist dis-

/_'(r) = P: +/'2

tribution is given by

R/2 + 2Ps [
(17)

where PI, P2, and Ps are the components of the vector of design parameters P" and R is the

propeller radius.

Experimentation with the propeller analysis code indicated that the flow iterative solution

diverges when the blade tip angle exceeds a certain limit. To exclude the region leading to

the divergence from our search in the design parameter space, the following redefinition of

the objective function was introduced:

where _ determines the allowable search region. As the value of _ increases, the allowable

search region also increases. The value of _ was taken to be equal to 5.0 unless otherwise

specified.

The mesh used in the following computations consists of 45 points in the axial direction,

21 points in the radial direction, and 11 points between adjacent blades in the circumferential

direction. Computations are initialized by the SR-3 flow solution, which corresponds to a

54.9" angle at the 75% blade span. This initial solution was intentionally chosen not to be a

TR-447/07-88 9



closeapproximationof the desired solution. In all the following computations, the modified

coordinate rotation scheme, which determines Gx by Equation (16) instead of Equation (13),

is used unless otherwise specified. Also, unless otherwise specified, the initial iterative

guesses for the design parameters are set equal to zero and the computational parameters c x,

c_, C, 6_P°, ___po,6Pm_,, _, and AN are given, respectively, by 1.2, 0.6, 3.0, 0.5, 0.5, 1.0, 0.0001,

and 40. The computations were performed on the NASA Lewis Cray X-MP computer.

The optimization scheme was mainly tested using the analysis code developed by

Yamamoto et al. (ref. 11) in its original form, referred to here as code O. Towards the end of

the present study, an error was discovered in the portion of the analysis code that computes

the propeller performance. This error was corrected, and the resulting modified code is

referred to here as code M. Some optimization results were recomputed using code M. Both

sets of computations resulted in substantially different solutions. The convergence properties

associated with both codes also showed substantially different behavior. While there may be

no interest in the first set of solutions for the purpose of improving the propeller design, both

the first and second sets of computations are of equal interest for the purpose of testing the

optimization scheme. Thus, the results of both sets of computations are presented below. The

results obtained by using code O are presented first, followed by those obtained by using code
M.

Using code O, it was determined that/_oS/, = 58.067*. The value of Cp for the initial flow

solution, which corresponds to a/_,/, value of 54.9", was 1.1. The optimization procedure was

applied to two-design-parameter problems and to three-design-parameter problems. For the

two-design-parameter computations, the values of Ps in Equations (17) and (18) are set equal

to zero. Results for the two-design-parameter problem are presented, followed by those for

the three-design-parameter problem.

The design parameters predicted by the optimization scheme are given by P_ =-2.83*,

P_ = 5.51". The predicted solution does satisfy the power constraint. The value of C_

corresponding to this solution is 1.6999. The objective function, E, was reduced from the

value -0.839 in the case of the original design, with P1 = P2 -- 0.0, to the value -0.908 in the

case of the optimized design. The value of the efficiency was increased from 0.839 for the ori-

ginal design to 0.910 for the optimized design.

The iterative histories of the design parameters are shown in Figure 2, while the iterative

histories of the power and efficiency are shown in Figure 3. From these figures two distinct

stages in the convergence process of the solution may be identified. In the first stage, rela-

tively rapid changes in the values of P-',Cp and ,! occur as they approach the converged values

of the solutions. At the end of this stage, these parameters are close to their final values. In

the second stage, minor adjustments take place as the parameter solutions converge to their

final values.

I0 TR-447/07-88
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The residual, RE, is a measure of the convergence of the flow field solution. Figure 4 com-

pares the residual history for the design problem, in which _" is updated in addition to P_ to

the residual history for the regular analysis problem, in which _ only is updated while ff is

held fixed. The figure indicates that modifying the propeller geometry in the design problem

as the iterative solutions for the flow variables are updated does not negatively affect the rate

of convergence of the flow field solution in comparison to the analysis problem. In fact, the

following results of our computations show that the convergence of the flow field solution is

accelerated when the design parameters are updated to satisfy the power constraint or to

satisfy the the conditions of the optimization problem. For a regular analysis problem with P'

set equal to 3; the number of iterations required for convergence was 4710. Throughout this

report, convergence is assumed to be achieved when the magnitude of the residual, RE, is

reduced to the value of 10-r. For a constrained solution in which the second component of

the design parameter vector, P2, was set equal to the value P_, while the first component was

updated throughout the iterative process so that the constraint Cp = C_ would be satisfied,

convergence was attained after 4040 iterative steps, indicating an increased convergence rate

relative to the regular analysis problem. For the design problem in which both P1 and P2

were updated in a manner that allows the constraint Cp = C_ to be satisfied and the objective

function E to be minimized, the number of iterative steps required for convergence was
further reduced to 3250.

On the average, 0.972 cpu second was required for the iterative step in the design problem,

while 0.403 cpu second was required for the iterative step in the analysis problem. Therefore,

the average design iterative step required slightly more than double the cpu requirements for

the analysis iterative step. In the design problem, two analysis problems are solved in parallel.

The additional cpu requirement for the design problem is mainly due to generating a new

computational mesh whenever the design parameters are updated.

For a regular analysis problem, the computational mesh is generated only one time at the

beginning of the computation. For a design problem, however, it is necessary to regenerate

the computational mesh whenever the design parameters are updated. In the present compu-

tations, this was done once every 40 iterative steps. The cost of mesh generation relative to

the cost of solving the flow equations was acceptably low. As the value of AN decreases,

however, a point may be reached at which the cost of generating the mesh becomes exces-

sively high, and it may represent a substantial fraction of the total computational cost. In this

case, a possible alternative to regenerating new meshes, whenever the design parameters are

updated, is the use of approximate meshes that are generated by linearly combining L+I

reference meshes. The reference meshes may be updated every K _,N iterative steps, where

K > 1. The need for making this approximation does not arise here, as the propeller analysis

code used here has relatively slow convergence properties and, therefore, the appropriate AN

12 TR-447/07-88



value is relatively large. However, the use of accelerating schemes, such as the multigrid

scheme, would allow the AN value to be sufficiently low to require the use of the mesh

approximation discussed above.

We have performed a single computation using the exact formulation for calculating T'l, as

given by Equation (12), with G1 computed by Equation (13). This formulation requires solving

L +1 problems in parallel instead of L problems, in the case of the approximate formulation

given by Equation (16). The average iterative step for this computation required 1.474 cpu

second. The number of iterations required for convergence was 3425. Comparing these values

to the corresponding values for the approximate formulation indicates that there is a strong

advantage in using the approximate formulation over the exact formulation.

To verify that the computed solution is indeed the optimum solution, solutions were com-

puted that were slightly perturbed from the optimum predicted solutions but that satisfied the

power constraint. Table 1 compares the values c-f the objective function for the solution

predicted by the optimization scheme, shown in the first row, to those for the perturbed solu-

tions, shown in the second and third rows. It is apparent from the table that perturbing the

design parameters causes the value of the objective function to increase. Therefore, the

design parameters predicted by the optimization scheme do indeed minimize the value of the

objective function.

Table 1. Objective Function at Optimum Solution and

Perturbed Solutions for Two-Design-Parameter Problem (Code O)

Px P2 E

-2.83 5.51 --0.90773

-2.73 5.31 -0.90730

-2.93 5.71 .-0.90728

The sensitivity of the scheme's convergence to the initial iterative guesses of the solution

and to the computational parameters was tested t:y recomputing the problem defined above

with perturbed initial conditions and computational parameters. Table 2 shows the number of

iterative steps, no, required for convergence when different values are used for the initial

iterative solutions and the computational parameters. It is clear from the table that the con-

vergence properties of the scheme are weakly sensitive to the values of the initial conditions

and the computational parameters. Needless to say, there is an optimum set of values for these

parameters that maximizes the convergence rate of the scheme for a given problem. However,

TR-447/07-88 13



Table 2. Effect of Perturbing Initial Conditions and Computational Parameters

on Scheme's Convergence for Two-Design-Parameter Problem (Code O)

po pO ZXn C cl c2 nc

0.0 0.0 40 3.0 1.2 0.6 3250

3.0 --5.0 40 3.0 1.2 0.6 3690

0.0 0.0 25 3.0 1.2 0.6 3376

0.0 0.0 40 4.5 1.2 0.6 3252

0.0 0.0 40 6.0 1.2 0.6 3250

0.0 0.0 40 3.0 1.5 0.6 3333

0.0 0.0 40 3.0 1.2 0.4 3120

0.0 0.0 40 3.0 1.5 0.4 3281

within a relatively wide range of these parameter values, good convergence is achieved. This

is due to the frequent updating of the design parameters in the course of solving the problem.

The cpu requirement for the average iterative step is approximately the same for all the cases

solved, except for the case in which AN = 25. The cpu requirement for the average iterative

step in this case is given by 1.078 seconds, in comparison to approximately 0.972 second for

the other cases. This is due to the increased frequency of generating the computational mesh

in the case with AN = 25. Figures 5 through 7 show the iterative histories for P1, P2, r/, Cp

and RE for the case in which the initial iterative guesses for the design parameters, pO and pO,

were perturbed. Among all the perturbed computations, the rate of convergence for this case

was affected the most.

The computations performed above for the two-design-parameter problem were performed

with a value of 5.0 for /_. To perform computations that allow both parabolic and linear

modifications to the blade angle distributions, it was necessary to reduce the value of/_ to 4.0.

The three-design-parameter optimization computations were solved using this value for /_.

The main two-design-parameter computation was also repeated using this value for _ to allow

a comparison between the two-design-parameter and the three-design-parameter results.

The optimum values of the design parameters for the two-design-parameter problem with

/_ = 4.0 were found to be given by P_ = -2.35" and P_ = 4.56". The value of Cp corresponding

to this solution is 1.6999. The objective function E was reduced from the value -0.839 in the

case of the original design, with P1 = P2 = 0.0, to the value -0.897 in the case of the optim-

ized design. The value of r/was increased from 0.839 for the original design to 0.900 for the

14 TR-447/07-88
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optimized design. As expected, the magnitudes of both E and rl determined with/_ = 4.0 are

less than those determined with /_ -- 5.0. As the value of/_ decreases, the restriction on the

allowable search region in the design parameter space increases. In the two-design-parameter

problem, 3235 iterative steps were required for convergence. The cpu requirement per itera-

tive step was 0.972 second. The optimum values of the design parameters for the three-

design-parameter problem with /_ = 4.0 were found to be P_ =-2.77", P_ = 4.50*, and

Pa =-1.20". The corresponding values of Cp, E, and _ are given by 1.6999, -0.900, and

0.905, respectively, indicating a superior design to that achieved by using only two design

parameters. The number of iterative steps required for convergence was 3228, while the cpu

requirement per iterative step was 1.459 seconds. The iterative histories for Pt, P2, Pa, rl, Cp

and RE are shown in Figures 8 through 10.

To verify the accuracy of the computed solution, several solutions were computed that

were slightly perturbed from the optimum predicted solution but that satisfied the power con-

straint. Table 3 compares the values of the objective function for the solution predicted by

the optimization scheme, shown in the first row, to those for the perturbed solutions shown in

the following rows. It is apparent from the table that perturbing the design parameters causes

the value of the objective function to increase. Therefore, the design parameters predicted by

the optimization scheme do indeed minimize the value of the objective function.

Table 3. Objective Function at Optimum Solution and

Perturbed Solutions for Three-Design-Parameter Problem (Code O)

P1 P2 Pa

-2.77 4.50 -1.20

-2.87 4.50 -1.45

-2.87 4.69 -1.20

-2.67 4.50 -0.93

-2.67 4.30 --1.20

E

-0.90026

-0.90011

-0.89986

-0.90012

-0.89988

The initial attempt to determine the optimum solution for the two-design-parameter prob-

lem by using code M led to an unconverged solution. An oscillatory iterative history was

observed for the design parameters (see Figure I l). This differs substantially from the

corresponding iterative history associated with the use of code O, as seen by comparing Fig-

ures 2 and II. The iterative histories for rl, Cp and RE obtained in this initial attempt are
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shownin Figures12and 13.To isolatetheeffectsof satisfyingtheconstraintconditionfrom
theeffectsof minimizingtheobjectivefunctionon theobservedbehavior,aseriesof testswas
conducted.The right-handsideof Equation(8) wassetequalto zeroin someof the tests,
while theright-handsideof Equation(7)wassetequalto zeroin others.Thesetestsindicated
that the convergencepropertiesof codesO andM weresimilarwhenthedesignparameters
were modifiedwith the objectiveof satisfyingthe constraintonly; however,they differed
whenthe designparametersweremodifiedwith the objectiveof minimizingthe objective
functiononly. In this latter case,thetestsshowedthat the efficiencycomputedby codeM
respondsto changesin thedesignparametersat a muchsloweriterativeratethanthatassoci-
atedwithcodeO.

In thecomputationsperformedby usingcodeO,the incrementalstepsizesof the design
parameterswerereducedby thefactorc2 frequently enough to allow convergence to occur.

On the other hand, when code M was used, the frequency at which the incremental step sizes

were reduced by the same factor was not sufficiently high to allow convergence to occur. A

satisfactory solution to this problem was obtained by requiring the design parameter incre-

mental step sizes to decrease continuously as the number of iterations increases. The function

of the factor c i, which was originally used as an incrementing factor with a value greater than

unity, was therefore changed to a decrementing factor with a value slightly less than unity.

The value of c i used in computing the following re._;ults was 0.98.

Using code M, it was determined that flo,/, = 5";.648 °. The value of Cp for the initial flow

solution, which corresponds to a fl,/, value of 54.9 °, was 1.2. The results of three computations

with different initial iterative guesses for the design parameters are shown in Table 4.

Table 4. Comparison of Computational Results

for Different Initial lterative Guesses (Code M)

po po

0.0 0.0

-2.0 -2.0

2.0 2.0

--0.67 1.22

-0.70 1.27

-0.60 1.10

cp

1.6998 0.82336

1.6998 0.82331

.6999 0.82333

n¢

3260

4000

4300

By optimizing the blade shape, the value of the efficiency was increased from 0.8229 for

the original design to 0.8233 for the optimized design. The table shows that the computed

solutions satisfy the power constraint to a high degree of accuracy. The values of r_predicted

by the different computations are in agreement to within 5x10 -6. Differences among the
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valuescomputedfor theoptimum solutions P_ and P_ are small; however, they are larger than

those associated with Cp and _. This indicates that the sensitivity of the propeller perfor-

mance to variations in the design parameters is relatively weak. Further reductions in the

differences among the results of the three computations may be obtained by continuing the

iterative computations further. For a regular analysis problem with P' set equal to P', the

number of iterations required for convergence was 4320. A comparison of this number with

the number of iterations required to solve the optimization problem, given in the table, shows

that the cost of solving the optimization problem is approximately twice the cost of solving a

regular analysis problem. The iterative histories for P1, P2, _, Cr and RE for the computation

with initial iterative conditions given by po = po = 0.0 are shown in Figures 14 through 16.

Figure 17 shows that the constraint (constant power) curve and the constant efficiency

contours in the design parameter space are nearly parallel. Along the constraint curve, the

variation in the objective function is very small, while its variation is relatively large in the

direction normal to the constraint curve. This configuration causes difficulties when conven-

tional optimization schemes are used. The success of the present scheme in solving this prob-

lem is an indication of its reliability.

In the computations presented above, the effect of varying the linear term of Equation (l 7)

on the propeller efficiency was investigated. To investigate the effect of varying the quadratic

term in Equation (17) on the propeller efficiency, a computation was performed in which Pa

was allowed to vary while P2 was set equal to zero. In this case, the design parameters

predicted by the optimization scheme were given by P_ = -0.79", P_ = -2.07*. The value of

Cp corresponding to this solution was 1.7000, and the value of _ was 0.82549. The number of

iterations required for convergence was 3980. A comparison of the values of r/for the two

cases in which (P_, p_) and (P_, P_) were the design parameters shows that the introduction

of a quadratic perturbation to the twist distribution is more effective in increasing the effi-

ciency than the introduction of a linear perturbation.

Finally, the optimum values of the design parameters for the three-design-parameter prob-

lem were found to be P_ = -3.34", P_ = 3.92", and Pa = -3.23". The corresponding values of

Cp and 17are given by 1.7000 and 0.83291, respectively. It is apparent that using a combina-

tion of linear and quadratic perturbations in the blade angle distribution is much more effec-

tive for improving the efficiency than using only one of these distributions. Relative to the

original SR-3 design, using both perturbed distributions increased the propeller efficiency by

0.0100. This is compared to a value of 0.0026 for the quadratic distribution alone and a value

of 0.0004 for the linear distribution alone. The number of iterative steps required for conver-

gence was 4380 in comparison to 4460 for the regular analysis problem. The iterative his-

tories for Pt, P2, Pa, _, Cp and RE are shown in Figures 18 through 20.
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Figure21 compares the optimum blade angle perturbations from the SR-3 baseline design

predicted for the cases of linear, quadratic, and combined linear and quadratic shape func-

tions. Curve C, which gives the blade angle perturbation distribution for maximum improve-

ment in efficiency, shows that the efficiency of the SR-3 propeller can be improved by reduc-

ing the blade angle distribution both at the hub and at the tip. This explains the observed

weak sensitivity of the propeller efficiency to linear variations in the blade angle distribution.

The use of a linear shape function allows an increase in the blade angle at either the tip or the

hub positions and a decrease in the blade angle at the other position. Therefore, the positive

effect on efficiency resulting from the perturbed blade angle distribution at one of these posi-

tions tends to cancel the negative effect resulting from the perturbed blade angle distribution

at the other position leading to the apparent insensitivity of the efficiency to linear variations

in the blade angle distribution. The maximum improvement in efficiency obtained here

resulted from the use of linear and quadratic shape functions. Further improvement may be

obtained by using other shape functions.
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Figure 21. Optimum Blade Angle Perturbations. (Code M)
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CONCLUSIONS

In this report, we developed a scheme for solving constrained optimization problems in

which the objective function and the constraint function are dependent on the solution of the

nonlinear flow equations. The scheme updates the design parameter iterative solutions and

the flow variable iterative solutions simultaneously, thereby eliminating the need for the costly

inner-outer iterative procedure associated with the use of conventional optimization schemes.

The scheme was applied to the problem of optimizing an SR-3 advanced propeller design with

the Euler equations assumed to be the flow governing equations. The optimized design caused

a 1.2% increase in the propeller efficiency.

Computations were performed to test the scheme's efficiency, accuracy, and sensitivity.

Two computer codes were used in the computations. The results from both codes indicate

that the cost of solving an optimization problem with L design parameters is approximately

equal to L times the cost of solving a regular analysis problem. The scheme is highly accurate

in determining the solution of the constrained optimization problem. The scheme's sensitivity

to the computational parameters was tested using only one of the two codes. This study

showed that the convergence rate of the solution i_; weakly sensitive to variations in the com-

putational parameters and the initial iterative guesses for the design parameters.
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APPENDIX: NOMENCLATURE

incrementing factor for optimization scheme [see Equation (9)]

decrementing factor for optimization scheme [see Equation (9)]

positive constant for chord method [see Equation (7)]

power coefficient

desired power coefficient

propeller diameter

unit vector along the P_ axis

objective function

constraint function

solution of the flow governing equations

l °' component of V/relative to rotated coordinate system

unit vector along the P_ axis with components defined relative to the unrotated

design parameter coordinate system

unit vector along the _P_axis with compc_nents defined relative to the rotated

design parameter coordinate system

number of design parameters

number of iterations required for convergence

vector of design parameters

vector of design parameters relative to rotated coordinate system

l °' component of design parameter vecWr

1°' component of design parameter vector relative to rotated coordinate system

radial coordinate

blade tip radius

residual Euclidean norm

SR-3 blade angle at 75% blade span

/_3/,which corresponds to the power coefficient C_,

unperturbed blade angle distribution

blade angle distribution perturbation

incremental vector used to update the vector of design parameters

maximum incremental value allowed in updating the design parameters

number of iterative steps at which P is periodically updated

small positive incremental value used to perturb the design parameters

efficiency

parameter determining the allowable region in design parameter space for

searching for the optimum solution [see Equation (18)]

flow iterative solution
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APPENDIX: NOMENCLATURE (CONT.)

Superscripts

n iteration number

* optimum value

Subscripts

M coordinate system rotated by the modified scheme

rotated coordinate system
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